RESOLVABILITY OF TOPOLOGICAL SPACES

István Juhász

Alfréd Rényi Institute of Mathematics

Hejnice, January/February 2012

A D M A A A M M

- A 🖻 🕨

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

-X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

-X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

-X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

 $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

– A topological space X is κ -resolvable iff it has κ disjoint dense subsets.

- X is maximally resolvable iff it is $\Delta(X)$ -resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

FACTS.

- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

- There is a countable, regular ($\equiv T_3$), dense-in-itself space X (i.e. $|X| = \Delta(X) = \omega$) that is irresolvable (\equiv not 2-resolvable).

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

(日)

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

・ロン ・ 四 と ・ ヨ と ・ ヨ ・

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

・ロン ・ 四 と ・ ヨ と ・ ヨ ・

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

<ロ> <四> <四> <四> <三</td>

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

<ロ> <四> <四> <四> <三</td>

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

If $\{Y \subset X : Y \text{ is } \kappa - \text{resolvable}\}$ is a π -network in the space X then X is κ -resolvable.

PROOF. { $Y_i : i \in I$ } be a maximal disjoint system of κ -resolvable subspaces of X, { $D_{i,\alpha} : \alpha < \kappa$ } be disjoint dense sets in Y_i for $i \in I$. Clearly, then $D_{\alpha} = \bigcup_{i \in I} D_{i,\alpha}$ for $\alpha < \kappa$ are disjoint dense sets in X.

COROLLARY 1

If every open $G \subset X$ with $|G| = \Delta(G)$ has a κ -resolvable subspace then X is κ -resolvable.

COROLLARY 2

If X is irresolvable then there is an open $Y \subset X$ that is OHI. So, X is irresolvable iff there is an ultrafilter on X generated by open sets.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let C be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

イロト イヨト イヨト イヨ

DEFINITION. (i) \mathcal{A} is a B_{κ} -system if $|\mathcal{A}| = \kappa$ and $|\mathcal{A}| = \kappa$ for all $\mathcal{A} \in \mathcal{A}$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let C be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

イロト イヨト イヨト イヨ

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let C be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any *B_κ*-space is *κ*-resolvable.
(ii) Let *C* be a class of spaces that is open hereditary and π(*X*) ≤ |*X*| for all *X* ∈ *C*. Then every member of *C* is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let C be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

< ロ > < 同 > < 回 > < 回 >

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable.

(ii) Let C be a class of spaces that is open hereditary and $\pi(X) \le |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let C be a class of spaces that is open hereditary and $\pi(X) \le |X|$ for all $X \in C$. Then every member of C is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

< ロ > < 同 > < 回 > < 回 >

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let \mathcal{C} be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in \mathcal{C}$. Then every member of \mathcal{C} is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

イロト イヨト イヨト イヨト

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let \mathcal{C} be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in \mathcal{C}$. Then every member of \mathcal{C} is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

イロト イヨト イヨト イヨト

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let \mathcal{C} be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in \mathcal{C}$. Then every member of \mathcal{C} is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

DEFINITION. (i) A is a B_{κ} -system if $|A| = \kappa$ and $|A| = \kappa$ for all $A \in A$. (ii) X is a B_{κ} -space if it has a B_{κ} -system π -network.

THEOREM. Bernstein-Kuratowski

If \mathcal{A} is a B_{κ} -system then there is a disjoint family \mathcal{D} with $|\mathcal{D}| = \kappa$ s.t. $D \cap A \neq \emptyset$ for all $A \in \mathcal{A}$ and $D \in \mathcal{D}$.

COROLLARY

(i) Any B_{κ} -space is κ -resolvable. (ii) Let \mathcal{C} be a class of spaces that is open hereditary and $\pi(X) \leq |X|$ for all $X \in \mathcal{C}$. Then every member of \mathcal{C} is maximally resolvable.

EXAMPLES. Metric spaces, locally compact Hausdorff spaces, GO spaces (\equiv subpaces of LOTS).

< ロ > < 同 > < 回 > < 回 >

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

< ロ > < 同 > < 回 > < 回 >

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

THEOREM. J-Sz

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

THEOREM. J-Sz

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(x, X_{\delta}) \leq \chi(x, X)^{\omega} < \lambda \leq \kappa$ for $x \in S$, so $\pi(X_{\delta}) \leq \kappa$.

THEOREM. J-Sz

Every compact T_2 space X is maximally G_{δ} -resolvable ($\equiv X_{\delta}$ is maximally resolvable).

PROOF. Enough to show: $|X| = \Delta(X_{\delta}) = \kappa > \omega$ implies $\pi(X_{\delta}) \le \kappa$.

(i) If $\kappa = \kappa^{\omega}$ then even $w(X_{\delta}) \leq w(X)^{\omega} \leq \kappa$.

(ii) $\kappa < \kappa^{\omega}$ let λ be minimal with $\lambda^{\omega} > \kappa$, then $\mu < \lambda$ implies $\mu^{\omega} < \lambda$.

 $S = \{x \in X : \chi(x, X) < \lambda\}$ is G_{δ} -dense in X: If $H \subset X$ were closed G_{δ} with $\chi(x, X) = \chi(x, H) \ge \lambda$ for all $x \in H$ then $|H| \ge 2^{\lambda} \ge \lambda^{\omega} > \kappa$ by the Čech-Pospišil thm, contradiction.

But $\chi(\mathbf{x}, \mathbf{X}_{\delta}) \leq \chi(\mathbf{x}, \mathbf{X})^{\omega} < \lambda \leq \kappa$ for $\mathbf{x} \in S$, so $\pi(\mathbf{X}_{\delta}) \leq \kappa$.

 $ls(X) = \min\{|\mathcal{L}| : X = \cup \mathcal{L} \land \forall L \in \mathcal{L} \text{ is left sep'd}\}.$

LEMMA. (Pavlov, 2002)

If $Is(G) \ge \kappa$ for all open $G \subset X$ then X is κ -resolvable.

PROOF. Every space has a dense left separated subspace.

< □ > < 同 > < 回 > < 回

 $ls(X) = \min\{|\mathcal{L}| : X = \cup \mathcal{L} \land \forall L \in \mathcal{L} \text{ is left sep'd}\}.$

LEMMA. (Pavlov, 2002)

If $Is(G) \ge \kappa$ for all open $G \subset X$ then X is κ -resolvable.

PROOF. Every space has a dense left separated subspace.

 $ls(X) = \min\{|\mathcal{L}| : X = \cup \mathcal{L} \land \forall L \in \mathcal{L} \text{ is left sep'd}\}.$

LEMMA. (Pavlov, 2002)

If $I_S(G) \ge \kappa$ for all open $G \subset X$ then X is κ -resolvable.

PROOF. Every space has a dense left separated subspace.

 $ls(X) = \min\{|\mathcal{L}| : X = \cup \mathcal{L} \land \forall L \in \mathcal{L} \text{ is left sep'd}\}.$

LEMMA. (Pavlov, 2002)

If $ls(G) \ge \kappa$ for all open $G \subset X$ then X is κ -resolvable.

PROOF. Every space has a dense left separated subspace.

A (10) F (10)

 $ls(X) = \min\{|\mathcal{L}| : X = \cup \mathcal{L} \land \forall L \in \mathcal{L} \text{ is left sep'd}\}.$

LEMMA. (Pavlov, 2002)

If $ls(G) \ge \kappa$ for all open $G \subset X$ then X is κ -resolvable.

PROOF. Every space has a dense left separated subspace.

A (1) > A (2) > A

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X \mathfrak{c} -resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X \mathfrak{c} -resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X \mathfrak{c} -resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $Is(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $Is(G) \ge Is(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X \mathfrak{c} -resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X \mathfrak{c} -resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \ge \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Every crowded countably compact T_3 space X is ω_1 -resolvable.

NOTE. This fails for T_2 !

PROOF. Tkachenko (1979): If *Y* is countably compact T_3 with $ls(Y) \le \omega$ then *Y* is scattered. But every open $G \subset X$ includes a regular closed *Y*, hence $ls(G) \ge ls(Y) \ge \omega_1$.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \geq \mathfrak{c}$.

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \ge \omega$) and $D \subset X$ is dense with $|D| \le \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D, a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

< ロ > < 同 > < 回 > < 回 >

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \ge \omega$) and $D \subset X$ is dense with $|D| \le \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D, a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \ge \omega$) and $D \subset X$ is dense with $|D| \le \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D, a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \ge \omega$) and $D \subset X$ is dense with $|D| \le \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \ge \omega$) and $D \subset X$ is dense with $|D| \le \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \geq \omega$) and $D \subset X$ is dense with $|D| \leq \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \geq \omega$) and $D \subset X$ is dense with $|D| \leq \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

Assume that \mathcal{I} is a κ -complete ideal on X ($\kappa \geq \omega$) and $D \subset X$ is dense with $|D| \leq \kappa$ s.t. for any $x \in D$ and $Y \in \mathcal{I}$ there is $Z \in \mathcal{I}$ for which $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. Then X is κ -resolvable.

PROOF. Set $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $a_x = \{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. By transf. rec'n on $\alpha < \kappa$ define $Z_{\alpha} \in \mathcal{I}$ s.t. $(\bigcup_{\beta < \alpha} Z_{\beta}) \cap Z_{\alpha} = \emptyset$ and $x_{\alpha} \in \overline{Z_{\alpha}}$. For fixed $i < \kappa$ set

$$S_i = \cup \{Z_{\alpha_{x,i}} : x \in D\},\$$

where $\alpha_{x,i}$ is the *i*th member of a_x . Then S_i is dense because $D \subset \overline{S_i}$.

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{x,i}} : x \in D\}$, for $i < \kappa$.

イロト 不得 トイヨト イヨト

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{x,i}} : x \in D\}$, for $i < \kappa$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{x} = \{\alpha : x = x_{\alpha} \land \mu_{x} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{x,i}} : x \in D\}$, for $i < \kappa$.

・ロト ・四ト ・ヨト ・ヨト

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{x,i}} : x \in D\}$, for $i < \kappa$.

・ロト ・四ト ・ヨト ・ヨト

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

A (10) A (10)

DEFINITION. (i) For κ regular, $x \in X$ is a T_{κ} -point if for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\kappa}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (ii) For κ singular, $x \in X$ is a T_{κ} -point if there is $\mu < \kappa$ s.t. for every $Y \in [X]^{<\kappa}$ there is $Z \in [X]^{<\mu}$ with $Y \cap Z = \emptyset$ and $x \in \overline{Z}$. (iii) $T_{\kappa}(X)$ denotes the set of all T_{κ} -points of X.

LEMMA

For any κ , if there is $D \subset T_{\kappa}(X)$ dense with $|D| \leq \kappa$ then X is κ -resolvable.

PROOF (for singular κ). Put $D = \{x_{\alpha} : \alpha < \kappa\}$ s.t. $\forall x \in D$, $\{\alpha : x = x_{\alpha}\} \in [\kappa]^{\kappa}$. Define $\{Z_{\alpha} : \alpha < \kappa\}$ disjoint s.t. $|Z_{\alpha}| \le \alpha$ and $x_{\alpha} \in \overline{Z_{\alpha}}$ if $\mu_{X_{\alpha}} \le \alpha$. Then use $a_{X} = \{\alpha : x = x_{\alpha} \land \mu_{X} \le \alpha\} \in [\kappa]^{\kappa}$ to obtain the disjoint dense sets $S_{i} = \bigcup \{Z_{\alpha_{X,i}} : x \in D\}$, for $i < \kappa$.

A (10) A (10)

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in *Y* for any $a \in [\kappa]^{\kappa}$.

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in *Y* for any $a \in [\kappa]^{\kappa}$.

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace.

By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in *Y* for any $a \in [\kappa]^{\kappa}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in Y for any $a \in [\kappa]^{\kappa}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in *Y* for any $a \in [\kappa]^{\kappa}$.

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in Y for any $a \in [\kappa]^{\kappa}$.

If κ is regular and $T_{\kappa}(X) = X$ then X is κ -resolvable.

PROOF. $T_{\kappa}(X) = X$ implies $T_{\kappa}(Y) = Y$ for all open $Y \subset X$, hence it suffices to show that X has a κ -resolvable subspace. By regularity of κ , for any $A \in [X]^{<\kappa}$ there is $B \in [X]^{<\kappa}$ s.t. $A \cap B = \emptyset$ and $A \subset \overline{B}$.

So, we may define disjoint sets $\{A_{\alpha} : \alpha < \kappa\} \subset [X]^{<\kappa}$ s.t.

$$\cup_{\beta<\alpha} A_{\beta} \subset \overline{A_{\alpha}}$$

for each $\alpha < \kappa$. Then $Y = \bigcup \{A_{\alpha} : \alpha < \kappa\}$ is κ -resolvable because $\bigcup \{A_{\alpha} : \alpha \in a\}$ is dense in Y for any $a \in [\kappa]^{\kappa}$.

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ団ト イヨト イヨト

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ押ト イヨト イヨト

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ押ト イヨト イヨト

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ押ト イヨト イヨト

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ押ト イヨト イヨト

(ii) For $Q \subset CARD$, $p \in X$ is a B_Q -point if for each $\kappa \in Q$ there is a B_{κ} -system \mathcal{B}_{κ} s.t. $\cup \{\mathcal{B}_{\kappa} : \kappa \in Q\}$ forms a local π -network at p.

EXAMPLES. (i) If the one-one sequence $\{x_{\alpha} : \alpha < \kappa\}$ converges to *p* then *p* is a B_{κ} -point.

The converse fails, even for $\kappa = \omega$: Any infinite compact T_2 space has a B_{ω} -point.

(ii) If $x \in \overline{A}$ and each $y \in A$ is a B_{Q_y} -point with $|A| \leq \min Q_y$, then x is a B_Q -point for $Q = \bigcup \{Q_y : y \in A\}$.

イロト イ押ト イヨト イヨト

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\rho,\overline{A}) = \psi(\rho,\overline{A}) = \kappa \ge \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\rho,\overline{A}) = \psi(\rho,\overline{A}) = \kappa \ge \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\rho,\overline{A}) = \psi(\rho,\overline{A}) = \kappa \ge \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega.$

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

ヘロト ヘ部ト ヘヨト ヘヨト

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

DEFINITION. *X* is a Pytkeev space if for every non-closed set $A \subset X$ there are a B_{κ} -point *p* and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

EXAMPLES. (i) $B = \{x_{\alpha} : \alpha < \kappa\} \subset A$ converges to p.

(ii) $\chi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \psi(\boldsymbol{\rho}, \overline{\boldsymbol{A}}) = \kappa \geq \omega$.

(iii) By (i) pseudoradial spaces, and by (ii) *k*-spaces are Pytkeev.

THEOREM. (Pytkeev, 1983)

Every Pytkeev space is maximally resolvable.

LEMMA.

Assume that X is a Pytkeev space and $Z \subset X$ is $< \lambda$ -closed (i.e. $A \in [Z]^{<\lambda}$ implies $\overline{A} \subset Z$). Then every $y \in \overline{Z} \setminus Z$ is a B_Q -point where $\lambda \leq \min Q$.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

The case of singular λ is similar but more technical.

A B b 4 B b

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

The case of singular λ is similar but more technical.

A B b 4 B b

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$.

We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

The case of singular λ is similar but more technical.

A B F A B F

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_0 -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

The case of singular λ is similar but more technical.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, $a < \lambda$ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

PROOF OF LEMMA. Assume not. Then $A = Z \cup \{y \in \overline{Z} : ...\}$ is not closed, so there is a B_{κ} -point p and $B \in [A]^{\leq \kappa}$ s.t. $p \in \overline{B} \setminus A$. We have $\kappa < \lambda$, as o.w. $Q = \{\kappa\}$ implied $p \in A$. As Z is $< \lambda$ -closed, we may assume $B \subset \{y \in \overline{Z} : ...\}$. But then p is a B_Q -point with $Q = \cup \{Q_y : y \in B\}$, contradiction.

PROOF OF THEOREM. It suffices to show that if $Y \subset X$ is open with $|Y| = \Delta(Y) = \lambda$ then Y has a λ -resolvable subspace.

1) If $T_{\lambda}(Y)$ is dense in Y then Y is λ -resolvable.

2) O.w. $T_{\lambda}(Y) = \emptyset$ can be assumed. Consider the case λ regular. Then for every $y \in Y$ there is $A \in [Y]^{<\lambda}$ s.t. $y \notin \overline{B}$ whenever $B \in [Y \setminus A]^{<\lambda}$. There is, in X, a < λ -closed $Z \supset Y \setminus A$ with $y \in \overline{Z} \setminus Z$. So, y is a B_Q -point with $\lambda \leq \min Q$, hence it is a B_{λ} -point as Y is open and $|Y| = \lambda$. Then Y has a B_{λ} -system π -network and so is λ -resolvable.

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

< ロ > < 同 > < 回 > < 回 >

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume that $\mu \ge \omega$ and for every $x \in X$ there is some $\kappa \ge \mu$ s.t. x is a B_{κ} -point. Then X is μ -resolvable.

PROOF. If τ is the topology of *X*, by Zorn's lemma there is a maximal topology $\rho \supset \tau$ s.t. if \mathcal{B} witnesses that (for some $\kappa \geq \mu$) *x* is a B_{κ} -point w.r.t. τ then the same is true w.r.t. ρ .

Then $\langle X, \varrho \rangle$ is Pytkeev: If $Y \subset X$ is not ϱ -open then, by maximality, there is a B_{κ} -point (w.r.t. ϱ) $x \in Y$ and a witness \mathcal{B} for this s.t. $B \setminus Y \neq \emptyset$ for all $B \in \mathcal{B}$. So, there is $Z \in [X \setminus Y]^{\leq \kappa}$ with $x \in \overline{Z}^{\varrho}$.

Thus $\langle X, \varrho \rangle$ is maximally resolvable, while $\Delta(X, \varrho) \ge \mu$, by definition. Consequently, X is μ -resolvable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >